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This paper concerns global phase structures of a time-delayed-feedback controlled two-well Duffing system.
The remains of a global stretch and fold structure along an unstable manifold, which develops from an unstable
fixed point in function space, reveals that the global chaotic dynamics is inherited from the original system by
the controlled system. The remains of the original chaotic dynamics causes a highly complicated domain of
attraction for target orbits and a long chaotic transient before convergence.
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I. INTRODUCTION

For more than a decade, extensive studies on controlling
chaos have been carried out in the field of nonlinear dynam-
ics �1�. With introduction of the sophisticated idea by Ott
et al. �2�, several advanced methods have been designed.
These methods intend to change the chaotic motion of a
system to a periodic one by stabilizing unstable periodic or-
bits embedded in chaotic attractors.

As one of the methods, time-delayed-feedback control �3�
has attracted much interest of researchers up to the present.
The strategy of this control method is to employ the differ-
ence signal between the present output signals and the past
ones measured in a chaotic system. Control parameters are
adjusted so that the difference signal converges to null when
the controlled system is stabilized to a target unstable peri-
odic orbit. Since the strategy is only relying on the time
series of measurable output signals, the control method is a
practical way to achieve continuous control of chaotic sys-
tems without the exact models of the systems nor compli-
cated computer processing for reconstruction of the underly-
ing dynamics. The feasibility of the control method has been
experimentally verified already in a wide variety of fields
including electronic circuits �4,5�, laser systems �6�, gas
charge systems �7�, mechanical oscillators �8�, and chemical
systems �9�. In addition, theoretical analysis has been per-
formed based on stability analysis of the target unstable pe-
riodic orbits �10–16�. Among the results, the odd number
condition is well known to give an inherent limitation con-
cerning a class of unstable periodic orbits which cannot be
stabilized by the strategy. The condition was first derived for
discrete systems �17� and subsequently extended to continu-
ous systems �11–13�. To overcome this limitation, Pyragas
has recently improved the strategy �15�.

On the other hand, there still remain open problems on the
clarification of the control performance �14�. In particular,
there has been no intrinsic discussion of the global dynamics
of controlled systems and related control characteristics have
not been clarified �18�. The global dynamics of a controlled
system is governed by the global phase structure in function
space, because the controlled system is described by differ-
ential difference equations �19�. The clarification of the glo-
bal phase structure is important even in practice due to its
direct relevance to the control characteristics, such as the
domain of attraction for target orbits and transient behavior

before convergence to them. As for the domain of attraction,
the authors have recently reported that the boundary of the
domain of attraction possibly has a self-similar structure
�20�. It implies that the dynamics of controlled systems is
governed by a complicated global phase structure that pro-
duces a sensitive dependence on initial conditions. Further-
more, the results are important from the practical point of
view, because the sensitive dependence also implies that the
success of control can be affected by the noise of the con-
trolled system and the onset timing of control. The results
have therefore shown that the global dynamics in function
space should be considered for advanced use of the control
method.

In this paper, we numerically discuss the global phase
structure of a two-well Duffing system under time-delayed-
feedback control. The two-well Duffing system is a model of
first-mode vibration in the magnetoelastic beam system un-
der sinusoidal forcing �21�. The control of chaos in the two-
well Duffing system is an important subject of research rel-
evant to the elimination of the chaotic vibration in
mechanical systems. So far, the stabilization of chaos in a
magnetoelastic beam system was experimentally achieved
using time-delayed-feedback control �8�. The features of the
phase propagation of the control signal were discussed in
Ref. �18�.

This paper consists of the following sections. Section II
describes a mathematical model of the time-delayed-
feedback controlled two-well Duffing system. Section III in-
vestigates the global phase structure of the controlled system
by focusing on an unstable manifold. Section IV discusses
the deterioration of the control performance based on the
results in Sec. III.

II. TWO-WELL DUFFING SYSTEM UNDER TIME-
DELAYED-FEEDBACK CONTROL

The Duffing system is a two-dimensional nonautonomous
system originating in a model of synchronous machines �22�.
Among a variety of its applications, the two-well Duffing
system is derived as a model of the first-mode vibration in a
magnetoelastic beam system under sinusoidal forcing �21�.
The two-well Duffing system controlled by a scalar signal
u�t� is given as follows:
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d

dt
�x

y
� = � y

− �y + �x − �x3 + A cos �t
� + bu , �1�

where x and y denote the displacement and velocity of the
system, respectively. b denotes a two-dimensional constant
vector concerning coupling between the control signal and
the state variables.

As Pyragas proposed in his paper, u�t� is determined by
the difference signal between the current output signal and
the past one as follows �3�:

u = K�g�x�,y�� − g�x,y�� , �2�

where � denotes the time delay and K the feedback gain.
g�x ,y� and g�x� ,y�� show a scalar output signal measured at
the current time t and the past time t−�, respectively. Since
the control signal depends on only the time series of the
output signal, the control method can be implemented in ex-
perimental systems without any exact models or detailed
analyses of the underlying dynamics using the time series.
The control performance has a crucial dependence on the
time delay � and the feedback gain K. The time delay is
adjusted to the period of the target unstable periodic orbits
embedded in a chaotic attractor. The control signal converges
to null under precise adjustment, after the controlled system
is stabilized on one of the target orbits. It is noted that some
targeting method is additionally needed to avoid unexpected
stabilization of an orbit which has the same period as the
target orbits. The feedback gain governs the stability of tar-
get orbits under the precise adjustment of time delay. How-
ever, its systematic design has not been formulated at the
present stage.

From the point of dynamical system theory, the two-well
Duffing system controlled with delayed input should be
treated as an infinite dimensional dynamical system due to
the effect of time delay if K�0. The temporal evolution of
the controlled system is thus described by a discrete dynami-
cal system whose phase space is a function space. The do-
main of attraction and transient behavior, which will be dis-
cussed later, are characterized by the global phase structure
defined by this infinite dimensional system. On the other
hand, the controlled system under K=0 is identical to the
original two-well Duffing system. The controlled dynamics
therefore coincides with the dynamics in the original two-
dimensional system.

The investigation is hereafter performed for the system
parameters �=1.0 and �=1.0. The forcing frequency is fixed
at �=1.0. The global dynamics under these parameters was
summarized in Ref. �23�. The dynamics was classified with
respect to the damping coefficient � and the forcing fre-
quency A. � and A are here fixed at 0.16 and 0.27, respec-
tively, so that the two-well Duffing system generates a cha-
otic attractor under the absence of the control signal. The
chaotic attractor includes three unstable periodic orbits with
period 2� �23�, as shown in Fig. 1. Two of them, denoted by
1I and 1I�, are classified as inversely unstable and the remain-
ing 1D directly unstable by the location of their characteristic

multipliers in the complex plane.1 The characteristic multi-
pliers are obtained using the period-2� stroboscopic map. As
target orbits for control, 1I and 1I� are selected in this paper.
1I and 1I� are easily stabilized by the control method. By
measuring the velocity y, the control method is here imple-
mented as follows:

u = K�y2� − y� . �3�

This implementation is obtained by putting b= �0 1�T,
g�x ,y�=y, and �=2� into Eqs. �1� and �2�. It is noted that
feedback of the velocity signal was employed for stabiliza-
tion of the magnetoelastic beam �8�.

Note that 1D cannot be stabilized due to an inherent limi-
tation of the control method. This limitation is characterized
by a theoretical condition called the odd number condition as
follows. A hyperbolic unstable periodic orbit cannot be sta-
bilized by the original Pyragas method �3� and also by an
extended one �5�, if the orbit satisfies the odd number con-
dition, namely, the orbit has an odd number of real charac-
teristic multipliers greater than unity �13�. The odd number
condition was first introduced by Ushio for discrete time
control �17� and subsequently generalized for continuous
time control by Nakajima et al. �11,13�. Just independently
found essentially the same limitation �12�. The odd number
condition obviously applies to any directly unstable orbit,
because it has a unique real characteristic multiplier greater
than unity. 1D therefore cannot be stabilized under the con-

1This classification is based on Levinson’s classification of peri-
odic solutions in a system of class D, or a dissipative system for
large displacement. A periodic orbit in the system is called inversely
unstable, if its two characteristic multipliers �1 and �2 satisfy the
relation �2�−1��1�0. The periodic orbit is called directly un-
stable when its two multipliers have the relation �1	1	�2	0
�30�.

FIG. 1. Unstable period-2� orbits embedded in original chaotic
attractor �23�. 1I and 1I� denote inversely unstable periodic orbits of
the target, which are stabilized under sufficient large amplitude of
feedback gain. 1D is a directly unstable periodic orbit, which cannot
be stabilized because of the odd number condition. In Figs. 2�c�,
2�d�, 4, and 5 below, the notation 1I and 1I� is replaced by 1S and
1S�, respectively, to reflect the stability change of the target orbits.
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trol method, and this fact motivates us to investigate the
unstable manifold of 1D in the next section.

III. UNSTABLE MANIFOLD

A key to understanding the controlled dynamics is to in-
vestigate dynamical structures which play a governing role
in the global dynamics of the controlled system. We here
focus on a one-dimensional global unstable manifold, which
provides substantial information on the global phase struc-
ture in function space.2

As a starting point, the dynamics in the original two-
dimensional system is briefly described based on a literature
summarizing the global dynamics of the two-well Duffing
system �23�. The global dynamics of the two-well Duffing
system is characterized by the presence of the directly un-
stable periodic orbit denoted by 1D in Fig. 1. Since the stable
and unstable manifolds of the orbit generate a homoclinic
intersection in the cross section induced by stroboscopic
mapping with period 2�, a chaotic invariant set exists in the
original system. The closure of the unstable manifold coin-
cides with the chaotic attractor, in which the target orbits and

1D are embedded. Figure 2�a� shows the unstable manifold
and the chaotic attractor for the original system, which are
formally identical to the controlled system at zero feedback
gain. One can easily confirm that the closure of the unstable
manifold coincides with the chaotic attractor shown by gray
stroboscopic points. The chaotic invariant set exists at this
stage, because the unstable manifold of 1D transversely in-
tersects the stable manifold of 1D �21,23�, as mentioned
above. The regions of phase space are stretched and folded
along the unstable manifold with its temporal evolution.

Once the control signal is activated under K	0, the origi-
nal dynamics is perturbed by the control signal. The system
under consideration changes from the original two-
dimensional system to the corresponding infinite dimen-
sional one due to the presence of delayed input. On the other
hand, the global phase structure itself is still governed by the
unstable manifold of 1D because of the odd number condi-
tion. The odd number condition here implies that the 1D does
not change its dynamical property under the control signal,
that is, 1D keeps a unique real characteristic multiplier
greater than unity without any additional unstable multipliers
for K	0. As a result, 1D keeps the global unstable manifold
tangent to the one-dimensional unstable subspace of 1D un-
der control.

Figure 2�b� shows the unstable manifold for K=0.3. We
note that the target orbits are still unstable in the controlled
system and then the chaotic attractor is generated. One can

2The same approach has been used in analysis of a laser system
modeled by a differential difference equation. See Ref. �31�.

FIG. 2. Unstable manifold of 1D �projection on a two-dimensional stroboscopic plane�. In �a� and �b�, the target orbits are unstable and
the chaotic attractor is generated, as shown by gray stroboscopic points. In �c� and �d�, the targets are stable and stroboscopic points show
transient behavior before convergence to a target orbit. The notation of target orbits is changed to 1S and 1S� because of their stability
change. Arrows in �c� and �d� indicate the same stroboscopic point at which the control is activated.
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clearly see that the unstable manifold inherits the global
stretch and fold structure from the original unstable manifold
for K=0. The two branches of the unstable manifold initially
develop in opposite directions to each other. However, both
branches are folded and then come close to 1D again, parallel
to themselves. The regions of the phase space are stretched
around 1D and folded around the left and right sides in Fig.
2�b� with temporal evolution, as was observed in Fig. 2�a�
for K=0. The difference is that the unstable manifold is here
projected from the function space to the original two-
dimensional stroboscopic plane. This is the reason that the
unstable manifold appears to intersect itself.

As the feedback gain is further increased, the two target
orbits become stable. However, the unstable manifold still
keeps the stretch and fold structure. Figure 2�c� shows the
unstable manifold for K=0.75 slightly over the threshold
value for the stability change. The notation of the target or-
bits is here replaced by 1S and 1S� to reflect this stability
change. The two branches of the unstable manifold start from
1D in the opposite direction from each other. However, they
are folded and then come close to 1D again parallel to the
branches themselves. The branches further grow in the op-
posite direction from each other. The regions of phase space
are stretched near 1D and then folded around the left and
right hand sides in Fig. 2�c� with temporal evolution. It im-
plies that the phase space inherits the characteristics that pro-
duce the chaotic dynamics for K=0 and 0.3, while the origi-
nal chaotic attractor is destroyed because of the stability
change of the target orbits.

With the same approach, we can confirm that further in-
crease of feedback gain brings some global bifurcations
which completely break the homoclinic intersection obtained
in the original system. After these bifurcations, as shown in
Fig. 2�d�, the unstable manifold becomes quite simple com-
pared with those in Figs. 2�a�–2�c�. The unstable manifold in
Fig. 2�d� therefore shows that the original chaotic invariant
set disappears as the feedback gain is increased.

This section has discussed the global phase structure of
the controlled system, focusing on the unstable manifold of
1D. The invariance of the qualitative features of the unstable
manifold for increasing feedback gain has revealed that the
the original global chaotic dynamics possibly remains in the
controlled dynamics, even when the target orbits gain stabil-
ity in the controlled system. In addition, we have observed
that the original chaotic dynamics vanishes for high ampli-
tude. These results indicate that the controlled dynamics ex-
hibits crucially different behavior depending on the global
phase structure. In the next section, influences on control
performance are discussed.

IV. INFLUENCE ON CONTROL PERFORMANCE

From the point of view of control, it is expected that
controlled trajectories quickly converge to a target orbit se-
lected preliminarily. However, when the chaotic dynamics
remains in the controlled system, the trajectories wander ir-
regularly between 1S and 1S� along the unstable manifold
even when the target orbits become stable. In Fig. 2�c�, we
can confirm this by the fact that a trajectory after onset of

control is driven along the unstable manifold, as shown by
stroboscopic points. Figure 3 shows the corresponding tem-
poral change of displacement x and control input u. One can
see that the controlled trajectory irregularly goes back and
forth between 1S and 1S� many times, before it eventually
converges to 1S.

The steady states obtained by the control are not predict-
able because of this long and irregular transient behavior.
Figure 4 shows a classification of stroboscopic points by the
steady states. Each of the classified stroboscopic points here
denotes the state of the system at the onset time of control,
which was taken every 2� period so that each of the chosen
states is in the stroboscopic plane. Each of the stroboscopic
points corresponds to a different initial condition including
the state at the onset time. Different initial conditions for

FIG. 3. Transient behavior in the time domain for K=0.75.
Scale of time axis �not renormalized� is the same in �a� displace-
ment and �b� control input. Controlled trajectory irregularly goes
back and forth between two target orbits before final convergence to
1S, corresponding to chaotic motion of stroboscopic points in Fig.
2�c�. The same time scale is used in Fig. 6 below.

FIG. 4. Domain of attraction for target orbits at K=0.75. Black
and gray points show convergence to 1S and 1S�, respectively.
They are finely mixed with one another all over the original chaotic
attractor.
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controlled dynamics were determined at every onset time,
depending on a segment of a chaotic trajectory generated just
before the onset. The controlled trajectories for the chosen
initial conditions converged to either 1S or 1S� after transient
response. In Fig. 4, the stroboscopic points are classified
with black and gray colors, which imply convergence to 1S
and 1S�, respectively. The black and gray points are finely
mixed with one another all over the original chaotic attractor.
This implies that the steady states almost randomly alternate
between 1S and 1S� with onset timing of control and influ-
ence of external disturbance. In addition, since the two types
of points are mixed even in the neighborhood of the target
orbits, the controlled system is possibly stabilized to the tar-
get orbit at the opposite side from the other target, near
which the control is activated. The targeting scheme based
on linearization has therefore no possibility of effective con-
vergence in the practical situation. These characteristics are
obviously a disadvantage for engineering use of the control
method. However, no detailed discussion of these character-
istics has been obtained.

Corresponding to the simple global phase structure in Fig.
2�d�, the domain of attraction becomes quite simple for
K=1.1, as shown in Fig. 5. The classification implies that the
targeting scheme is effective. Most of the trajectories con-
verge to the target orbit located on their initial sides in the xy
plane, though there are some onset points leading the con-
vergence to the opposite side. The trajectories go into two
different sides in the process approaching 1D. The transient
behavior is also much simpler than at K=0.75. Figure 6
shows that rapid convergence to a target orbit is achieved
under high amplitude of the feedback gain.

We note that the classification adopted here has tested
only initial conditions derived from a chaotic trajectory. In
fact, the steady state for a chosen initial condition can be
different, if the state of the uncontrolled system is partly
modified in the time interval �t0−� , t0� where t0 is the onset
time of control. Nevertheless, the classification has provided

us substantial information on the structure of the domain of
attraction. Since the uncontrolled system is chaotic, we can
classify stroboscopic points densely plotted over the original
chaotic attractor. This implies that the classification in this
paper was performed for a system under no remarkable ex-
ternal disturbances which can modify the chosen initial con-
ditions within the time interval.

In this section, we have shown that the transient behavior
and domain of attraction accurately reflect the difference in
the two global phase structures obtained in Sec. III. In par-
ticular, we have clarified that these control characteristics are
significantly deteriorated when the original chaotic dynamics
remains in the controlled system. It should be emphasized
that one inevitably takes the global dynamics into account to
estimate control performance. This is because the exact
model of a chaotic system is often unknown and then control
is possibly activated in the region where the linearization
around a target orbit is not justified. The system after activa-
tion may exhibit long-term irregular behavior due to the re-
maining chaotic dynamics, even when the feedback gain is
appropriately designed or optimized from the point of linear
stability of target orbits. In other words, one should pay at-
tention to the global dynamics besides linear stability in un-
derstanding the behavior of the controlled system and de-
signing the control parameters.

Furthermore, we note that control of chaotic systems in-
volves the destruction of chaotic attractors as its intrinsic
nature. This is because the stability change of the target or-
bits embedded in a chaotic attractor can be achieved without
any global bifurcations that disentangle the complicated
phase structure originally producing the chaotic attractor. As
a result, a long chaotic transient occurs as in the case of
boundary crisis �24,25�, while the different mechanism
works behind the destruction. This implies, if chaos remains,
that the success of controlling chaos is governed by some
probabilistic law unless control is activated based on exact
knowledge of the local dynamics around target orbits. It
seems that the probabilistic law appears as the waiting time
for the onset timing of control.

FIG. 5. Domain of attraction for target orbits at K=1.1. Black
and gray points show convergence to 1S and 1S�, respectively.
Most of the controlled trajectories converge to the target orbit in
their initial side.

FIG. 6. Transient behavior for K=1.1. Time scale �not renormal-
ized� is the same as in Fig. 3. Corresponding to the simple global
structure in Fig. 2�d�, the controlled trajectory quickly converges to
1S� without any irregular behavior.
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We last recall that chaotic transients �24–26� and changes
in the basin boundaries �27–29� have been connected to the
collision and intersection of stable and unstable manifolds
emanating from unstable periodic orbits especially in low
dimensional systems. However, it is difficult, at least numeri-
cally, to identify the collision and intersection of manifolds
in systems with time delay, because the stable manifolds
have infinite dimension although the unstable manifolds keep
finite dimensions in general. This is what made us consider
only the unstable manifold of 1D; nevertheless, it has pro-
vided essential features of the global dynamics and related
control characteristics.

V. CONCLUSION

In this paper, we have numerically discussed the global
phase structure of the two-well Duffing system under time-

delayed-feedback control. The focus on a one-dimensional
unstable manifold gives substantial information about the
global phase structure in function space. Our results indicate
that the original chaotic dynamics possibly remains in the
controlled system in particular near the threshold value of the
stability change of the target orbits. The remains of chaos
highly complicate the domain of attraction for the target or-
bits and causes long chaotic transient behavior before achiev-
ing convergence. These destructive influences on the control
performance clearly show that the global dynamics in infinite
dimensional space should be considered for further extension
of the control method.
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